

Cogito, ergo sum

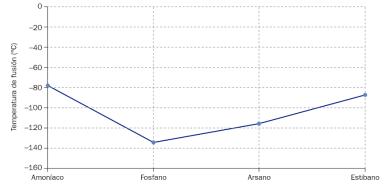
Control de Seguimiento II

Teoría atómico-molecular (TAM). Enlace químico | Grupo 4º ESO (A) | Curso 23-24

Nombre: Fecha:

Criterios de evaluación: 1.1, 2.3, 3.1.

CUESTIONES: [1 punto por cada apartado correcto]


- (a) Escribe la estructura de Lewis del dióxido de carbono, CO₂.
- (b) Explica si la siguiente frase es corecta o no: «Los halógenos presentan siempre enlace iónicos en sus combinaciones».
- (c) Ordena de menor a mayor polaridad de enlace la unión del H con N, O, F, P y Br.
- (d)Si ponemos en agua cloruro de sodio, vemos que disuelve obtenemos una disolución con un sabor salado,

a perio	dica	de e	lectr	oneg	ativi	dad	usan	do la	esc	ala d	e Pau	uling				
1	2											13	14	15	16	17
Li 1,0	Be 1,2						H 2,1					B 2,0	C 2,5	N 3,0	0 3,5	F 4,0
Na 0,9	Mg 1,0	3	4	5	6	7	8	9	10	11	12	Al 1,5	S i 1,8	P 2,1	S 2,5	CI 3,0
K 0,8	C a 1,0	Sc 1,3	Ti 1,5	V 1,6	C r 1,6	Mn 1,5	Fe 1,8	Co 1,8	Ni 1,8	Cu 1,9	Zn 1,6	Ga 1,6	Ge 1,8	As 2,0	S e 2,4	Br 2,8
Rb 0,8	Sr 1,0	Y 1,2	Zr 1,4	Nb 1,6	Mo 1,8	Tc 1,9	Ru 2,2	Rh 2,2	Pd 2,2	Ag 1,9	Cd 1,7	In 1,7	Sn 1,8	Sb 1,8	Te 1,9	l 2,5
Cs 0,7	Ba 0,9	La-Lu 1,1-1,2	Hf 1,3	Ta 1,5	W 1,7	Re 1,9	0s 2,2	lr 2,2	Pt 2,2	Au 2,4	Hg 1,9	TI 1,8	Pb 1,8	Bi 1,9	Po 2,0	At 2,2
Fr 0,7	Ra 0,9	Ac 1,1-1,7														

incolora..., pero no se trata de un ejemplo de reacción química espectacular. Cuando se echa en un recipiente con agua un trozo de sodio metálico, comienza a desplazarse rápidamente por la superficie del agua, pueden saltar trocitos más pequeños, se desprenden gases, se producen explosiones, aumenta la

temperatura del agua,... un proceso realmente llamativo y espectacular. ¿A qué se debe esa diferencia en el comportamiento del sodio en ambas situaciones?

(e) A continuación se presenta un gráfico que recoge las temperaturas de fusión a 1 atm de presión del amoníaco (NH₃), el fosfano (PH₃), el arsano (AsH₃) y el estibano (SbH₃). Explica estos datos en función de las fuerzas intermoleculares existentes dentro de un mismo compuesto.

PROBLEMA 1. [1 punto por cada apartado correcto]

La tabla de la derecha recoge los resultados obtenidos en cuatro experiencias diferentes para determinar la proporción en la que han reaccionado las sustancias simples dioxígeno v dinitrógeno para dar lugar a la formación de la sustancia compuesto monóxido de nitrógeno. Se pide:

Experiencia	Masa de N ₂ (g)	Masa de O ₂ (g)
1 <u>a</u>	14.10	16.75
2 <u>ª</u>	1.52	1.76
3 <u>a</u>	18.09	20.85
4ª	1.95	2.30

171

- (a) ¿Crees que esos datos cumplen la ley de Proust?
- (b) Si en una experiencia vieses que reaccionan completamente 5.91 g de dinitrógeno con 16.89 g de dioxígeno ¿qué conclusión sacarías o qué comentario harías sobre lo que ha podido ocurrir en la reacción?

PROBLEMA 2. [1 punto por cada apartado correcto]

Responde a las siguientes cuestiones, relacionadas con los compu halóge

uestos formados por un carbono enlazado a cuatro			4	4	
genos:	T.º fusión (°C)	-183,6	-22,6	92,3	
etermina el tipo de fuerza intermolecular que existirá					

- (a) De entre dos moléculas de estos compuestos que sean iguales.
- (b)Indica si a 25 °C estas sustancias estarían en estado sólido o no.

Cogito, ergo sum

18	VIIIA	2 He	10 Ne	18 Ar	36 Kr	54 Xe	86 Rn	0 g
17	VIIA		6 🖼	17 CI	35 Br	53 I	85 At	117 Ts
16	VIA		∞ 0	16 S	34 Se	52 Te	84 Po	116 Lv
15	۸۸		Z	15 P	33 As	51 Sb	83 Bi	115 Mc
14	IVA		° C	14 Si	32 Ge	50 Sn	82 Pb	114 F 1
13	₩		5 B	13 Al	31 Ga	49 In	81 T	113 Nh
12	≅				30 Zn	48 Cd	80 Hg	112 Cn
11	<u>8</u>				29 Cu	47 Ag	79 Au	Rg
10					28 Ni	46 Pd	78 Pt	110 Ds
6	VIIIB				27 C0	45 Rh	77 Ir	109 Mt
8					26 Fe	Ru	⁷⁶	108 Hs
7	VIIB				25 Mn	43 Tc	75 Re	107 Bh
9	VIB				24 Cr	42 M 0	74 W	106 Sg
5	VB				23	41 Nb	73 Ta	105 Db
4	IVB				22 Ti	40 Zr	72 Hf	104 Rf
3	B B				21 Sc	39 Y	57 <u>*</u>	89 <u>*</u>
2	HA		ь Ве	12 Mg	20 Ca	38 Sr	56 Ba	88 Ra
1	ĕ	1 H	3 Li	11 Na	19	37 Rb	55 Cs	87 Fr
		-	7	т	4	w	9	7

Lantánidos	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	\mathbf{V}^{70}	71 Lu
Actínidos	90	91	92	93	94	95	%	97	98	99	100	101	102	103
	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	ES	Fm	Md	No	Lr