22/10/2018

1. Clasifica los siguientes números indicando TODOS los conjuntos a los que pertenecen:

 π , $\sqrt{2} \cdot \sqrt{18}$, $7^{1/2}$, $1'\widehat{53}$, $0'01\widehat{2}$

2. Demuestra que sabes calcular la fracción <u>irreducible</u> que representa a este punto SIN LA CALCULADORA, indicando todos los pasos:

- 3. Intervalos:
 - 3.a) Dados A = (-3; 5], B = $(-\infty; 5]$, C = (-5; -3) y D = $[5; \infty)$ representation sobre la recta.
 - 3.b) Expresa en forma abreviada o conjunto estos 2 intervalos y represéntalos sobre la recta: $E = \{x \in \mathbb{R} \mid -3 \le x \le 0\}$ $F = \{x \in \mathbb{R} \mid x \ge 0\}$
 - 3.c) Expresa por comprensión el intervalo $G = (4, \infty)$, represéntalo sobre la recta.
 - 3.d) Sea $H = \{x \in \mathbb{Z} \mid -2 < x \le 2\}$ expresa el intervalo por extensión.
- 4. Calcular $A \cap B$, $A \cup C$, $C \cup F$, $A \cap C$, $B \cup D$ y $B \cap D$ con los intervalos del ejercicio anterior.
- 5. Realizar las siguientes operaciones simplificando lo máximo posible:

5.a) Introduce y simplifica:
$$\frac{a^3 \cdot b^3}{c^4} \cdot \sqrt[3]{\frac{c \cdot a^7}{b^8}}$$

5.d)
$$4\sqrt[4]{96} + 5\sqrt[3]{24} + 2\sqrt[4]{48} - 5\sqrt[3]{54}$$

5.b) Extrae y simplifica:
$$\sqrt[4]{\frac{3^{13.5^{10.28}}}{7^6}}$$

5.e)
$$\frac{\sqrt{1125}}{\frac{5}{3}} - \frac{\sqrt{180}}{3} + \frac{\sqrt[4]{56}}{5} - 3\sqrt{125}$$

5.c)
$$\left(\frac{a^2 \cdot a^{-3}}{a^{-2}a^3}\right)^{-1} \left(\frac{a^2 \cdot a^3}{a \cdot a^2}\right)^2$$

5.f)
$$\sqrt[5]{\frac{\sqrt[3]{3}}{\sqrt[2]{2}}}$$

6. Racionaliza y Simplifica:

6.a)
$$\frac{5+\sqrt{5}}{\sqrt{5}}$$

6.b)
$$\frac{2+\sqrt[3]{2}}{\sqrt[5]{2^2}}$$

6.c)
$$\frac{\sqrt{7}-\sqrt{6}}{\sqrt{7}+\sqrt{6}}$$

7. Tomando $\log 3 = 0.3$ y $\log 5 = 0.5$, demuestra que sin usar la calculadora sabes calcular:

7.c)
$$\log_2 9$$

7.b)
$$\log \frac{81}{125}$$

8. Calcula:

a).
$$\log_3 \sqrt[3]{3^4 \cdot \sqrt[3]{27^3}}$$

b).
$$\log_{\frac{1}{3}} (9 \cdot \sqrt[6]{27^5})^3$$

9. Deja en forma de un solo logaritmo:

$$8 \cdot (\log_2 x^2 + \log_2 x) - 4 \cdot (\log_2 4x^4 - \log_2 x^2)$$